Top industry scientists point to merits of a national centre for battery R&D, more second-life research
Share Article
Read More
News
Jun 11, 2021
Emma Buchanan

In the second panel of Electric Autonomy Canada’s national EV battery supply chain series, three leading battery experts took deep dives into technology, centralizing research and post-vehicle applications

In the second panel of Electric Autonomy Canada’s national EV battery supply chain series, three leading battery experts took deep dives into technology, centralizing research and post-vehicle applications

Electric Autonomy Canada hosted its second of a six-part series of national panel discussions on Canada’s national EV battery supply chain this week, with a focus on Canadian R&D and innovation in batteries.

Dr. Jeff Dahn, NSERC/Tesla Canada Industrial Research Chair at Dalhousie University; Dr. Chisu Kim, Director of Research at Hydro-Québec; and Dr. Soeren Striepe, Senior Manager, Electrified Powertrain and Batteries at Magna International are three of this country’s world-leading experts in the field. The discussion was moderated by Emma Jarratt, managing editor of Electric Autonomy Canada.

In an exclusive discussion, they gave their insights on Canada’s cutting-edge potential for innovation in batteries, as well as the challenges that might hold us back. To view a recording of the entire event, click on the video player at the top of this page.

Nova Scotia Business Inc
Episode Sponsor: Nova Scotia Business Inc.

Canada’s position in the world

It’s no secret that battery research is moving quickly. Lithium-ion is still the preference in electric vehicles, but the panel stressed that researchers here are matching their counterparts elsewhere in exploring developments in everything from zinc to solid-state electrolytes to graphite-based batteries.

Their message: from coast-to-coast-to-coast Canadian scientists are pushing the limits of batteries forward. The community here plays a vital role in advancing all varieties of chemistries and the R&D coming out of Canada is something the world watches and wants to be a part of.

Dr Jeff Dahn, NSERC/Tesla Canada Industrial Research Chair, Dalhousie University” “There’s really powerful research going on across the country, beyond lithium-ion”

That being said, the panelists pointed out some areas where Canada could do better to solidify its position and organize research and researchers in a more productive way. Of particular concern: the independent and disconnected nature of the country’s research teams can be a potential barrier holding back innovation. 

“We don’t have a centre of gravity to put together different stakeholders [and] different expertise to create synergy,” said Kim.

Invest in Canada gif
Webinar Series Presenting Sponsor: Invest in Canada

Centre of Excellence needed?

A national battery Centre of Excellence, which would pool university and government labs together, could serve as that centre of gravity. The panelists outlined a vision for a centre that could make researching technology commercially viable — especially in the first few years when innovations don’t yet make money. One of the success stories of such centres in other countries they cited is the Faraday Institution in the United Kingdom as an example balancing “productivity and confidentiality.” 

Striepe expanded, saying in Canada’s case it doesn’t have to just be the one centre: “It could be a community of multiple research teams, and industry participants in a constant exchange about projects.” But all the panelists acknowledged the collaborative nature of any centre may cause issues when, currently, top researchers are typically backed by corporations motivated to keep cutting-edge developments for their own products. 

Dr. Soeren Striepe, Senior Manager, Electrified Powertrain and Batteries, Magna International and Dr Jeff Dahn, NSERC/Tesla Canada Industrial Research Chair, Dalhousie University speaking on the pros and cons of a networked battery research Centre of Excellence

“I think many university scientists, like myself, have funding from industrial partners, and industrial partners are looking to get an advantage over the competition,” said Dahn. With so much competition in this area, Dahn said no company wants to “give up their secret sauce” and while an umbrella national organization would be excellent for encouraging start ups and more foreign interest, much of the sponsored research happening now will continue.

“I believe a centre of excellence is not the whole solution. It’s just a part of the solution,” added Kim.  

Dr. Chisu Kim, Director of Research, Hydro-Québec: “There is a place government can play to keep the whole value chain active in Canada”

And even with the rapid development of technology, all the panelists expressed confidence that a Canadian battery Centre of Excellence could keep up with the battery development of the future and an investment today, would not be obsolete in 10 years and, in fact, many of the technologies of tomorrow may come out of a Canadian centre.

“We’re very well set up in Canada for that,” said Dahn. “There’s really, really powerful research going on across the country in many of the universities.” 

If a vehicle did 800 full cycles, that works out to 400,000 kms of charging — longer than most people keep a vehicle, but not nearly enough to exhaust the energy lifetime of the battery.

Battery second life  

Another key topic for the group — one that was also a focus of many questions from the hundreds of webinar viewers — was the issue of what to do with batteries after their EV life. Dahn used the hypothetical example of a “typical” EV battery where the full charge-and-discharge cycle yields enough power to travel roughly 500 kilometres. If a vehicle did 800 full cycles, that works out to 400,000 kms of charging — longer than most people keep a vehicle, but not nearly enough to exhaust the energy lifetime of the battery.

“The modern lithium ion battery is going to outlast the vehicle,” said Dahn, “so you don’t want to just recycle it, you want to reuse it.” Panelists estimated a battery can still hold anywhere between 60 to 80 per cent of capacity once the car is done.

Another option, while drivers still own their vehicles, is to tap batteries for power when they’re not in use, said Dahn. “Why not connect the vehicle to the grid and … store energy from solar and wind and deliver it back when the car is parked?” 

Kim pointed out that while second-life use is environmentally beneficial, re-fitting a battery for use other than in a car may currently be more expensive than making another one altogether. 

“To make the second life possible, I believe the design of the battery pack should be re-oriented to keep second-use in mind,” she said, adding that the process needs to be easier and cheaper. 

And to Dahn’s point about vehicle-to-grid charging, although using leftover energy to power houses and buildings “totally makes sense,” Kim added there needs to be more research done to design batteries for more than vehicle use, as well as consideration of the many regulations and stakeholders that become involved once the batteries are a utility. 

One of those stakeholders would be EV owners. Striepe said it would be prudent to consider the issue from a customer’s perspective, who might not want to give up such a valuable part of their car for public utility. 

“One way is to make it very attractive to pay a good price for the energy that comes out of the car when it is discharged,” he said. 

Dr Jeff Dahn, NSERC/Tesla Canada Industrial Research Chair, Dalhousie University: “Once people realize that electric is a cheaper investment than a gas car, it’s going to be awesome”

Electric Autonomy’s next panel discussion on Battery Metals Extraction and Processing will take place on June 15. You can register for the event here.

Episode 3 battery
View Comments
You May Also Like
Related